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than achieving this singular geometry we find that one of two scenarios occur, depending

on the initial conditions. Either a horizon forms, shielding a curvature singularity, or the

cycle re-expands after an initial contraction phase. For the case where a horizon forms

we identify the final state with a known analytic black-hole solution. We also show use

our results to demonstate a novel compactification mechanism, owing to the asymptotic

structure of this black-hole solution.
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1. Introduction

The term string-theory can be interpreted in a number of different ways, including 26-

dimensional bosonic string theory, 11-dimensional M-theory and 10-dimensional super-

string theory. The common element is that these theories exist in dimensions other four.

Given that we only experience four dimensions we are forced, if string-theory is correct, to

explain why we do not observe these extra dimensions. There are two known mechanisms

to render extra dimensions unobservable, compactification [1] and brane-worlds [2, 3]; we

shall be studying compactification, whereby the full spacetime is constructed out of four

large dimensions and some small compact manifold. If we use the framework of superstring

theory then the compact manifold M has six dimensions, and if we require the low-energy

theory to be supersymmetric this imposes certain restrictions on the type of manifold M
can be. In this paper we shall not be switching on any of the fluxes sourced by D-branes

and therefore we find that M must have special holonomy [4], implying that M is a Calabi-

Yau space. A problem now arises in the lack of a unique way to choose M, there exist
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many different Calabi-Yau manifolds on which the compactification can take place. Some

only differ by parameters, giving a continuous degeneracy, but some have completely dif-

ferent topologies, leading to a discrete degeneracy. Calabi-Yau manifolds with the same

topology are grouped into moduli spaces, with the spectrum of massless moduli fields in

the low-energy theory depending solely on the topology of M.

This situation of having to choose one Calabi-Yau from the many was made more

palatable when it was realised that many of these Calabi-Yau manifolds were in fact con-

nected by finite length paths in moduli space [7 – 9], with the connecting geometry being

singular. One way to picture these transitions between manifolds is to study the cycles

within them, for example it may be that certain cycles collapse to zero size on one side of

the transition and expand as different cycles on the other. During such a transition the

Hodge numbers need not change, giving only a change of intersection numbers, such as a

flop transition where an S2 collapses and re-expands as a different S2. Even though the

Hodge numbers are unaffected this still constitutes a topology change and so is necessar-

ily singular from the geometrical perspective. Remarkably, string theory is able to make

sense of these singular geometries by the appearance of new light states corresponding

to D-branes wrapping the collapsing cycles; the dynamics of the low-energy theory of flop

transitions has been studied in [10 – 12]. Other transitions may change the Hodge numbers,

such as a conifold transition [5, 6] where an S2 collapses and reappears as an S3, see also [6].

Again, such a singular transformation can be made regular within string theory [13], and

the corresponding low-energy theory may be studied [14] along with its dynamics [15 – 19].

We have just described one of the key uses of singular geometries within string-theory,

namely they connect together different moduli spaces. This was achieved by the appearance

of extra light states coming from the wrapped D-branes around the collapsed cycles. These

“extra” states also play a crucial role in building low-energy models with chiral fermions

and non-Abelian gauge fields, allowing one to evade a no-go theorem [20] for low-energy

chiral fermions coming from compactification [21 – 24].

The types of singularity that have proven useful in the above constructions are conical,

taking the local description of a discrete quotient of a smooth manifold X̃ , X = X̃/Γ, where

Γ is a finite symmetry group; the singularity is then the fixed point set of Γ. Of particular

interest are those singularities which allow a smooth resolution, by blowing up certain

cycles of zero size contained within the fixed point set of Γ. This is achieved in practise

by a surgery which replaces a ball around the conical singularity with a ball of a smooth

special-holonomy space [34, 35, 28]. The moduli of this special-holonomy space then appear

in the low-energy theory as moduli fields [27].

In this paper we study the dynamics of the resolved spaces while the cycles are col-

lapsing. Unlike previous studies on the dynamics of such spaces [10 – 12, 15, 16] we are

particularly interested in the gravitational properties of collapsing cycles; more specifically,

whether a horizon forms as the cycle becomes small. Should a horizon form in the higher

dimensional theory, then this would render the low-energy theory based on the moduli

fields inapplicable near the conical singularity, implying that the dynamics of topology

changing processes is more complicated than simply studying the dynamics of the moduli

fields in the low-energy description.
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To have a specific model we shall be studying the resolution of the C
2/Z2 orbifold.

Singularities of this type are common in the construction of compact manifolds of special

holonomy [28], where one typically starts with a torus, imposes some reflection symmetries,

and then replaces the fixed points of the symmetries smooth manifolds. In our case the

singularity is resolved with the Eguch-Hanson instanton [25, 26]. We begin our study in

section 2 with a discussion of four-dimensional Euclidean instantons, and introduce the

Eguchi-Hanson solution along with its size modulus for the collapsing S2. In section 3 we

describe the method we use to simulate Einstein’s equations, with the initial data presented

in section 4. We finish by giving our results in section 5 and conclusions at the end.

2. Gravitational instantons

To have an explicit construction of a compact manifold with special holonomy using the

methods of Joyce [28] one needs to have explicit Ricci-flat metrics of special holonomy;

a number of such metrics are known for non-compact manifolds [25, 30 – 32]. One then

replaces a neighbourhood of the singularity with a region of the non-compact space, using

some form of smoothing at the join, to construct the metric on the smooth compact man-

ifold. As we are interested only in the dynamics near the putative conical singularity we

only sudy the dynamics of the non-compact space, assuming that information far from the

region of interest has no impact over the timescales of our simulations.

The singularity we are interested in resolving is the simplest case, C
2/Z2, and for

that we need to know something about Ricci-flat metrics on four-dimensional Riemannian

manifolds, also known as gravitational instantons.

2.1 Eguchi Hanson metric

The Eguchi-Hanson metric is a regular self-dual, hyper-Kähler metric in four-dimensions

and has the asymptotic structure of C
2/Z2 [25, 26], i.e. it is a resolution of the C

2/Z2 conical

singularity. It is constructed as a cohomogeneity-one metric with squashed three-spheres

as the level surfaces and has the explicit form

ds2
EH(l) = α(ρ)−1dρ2 +

1

4
ρ2

[

(σ2
1 + σ2

2) + α(ρ)σ2
3

]

, (2.1)

α(ρ) = 1 −
(

l

ρ

)4

. (2.2)

We have used the conventional left-invariant one-forms of SU(2) which satisfy

dσi = −1

2
ǫijkσj ∧ σk, (2.3)

and the parameter l is a constant parameter i.e. a modulus of the solution.

From the above form of the metric we see that there is an apparent singularity at

ρ = l, we get a clearer understanding of its nature if we look close to this region using the

following co-ordinates,

ρ = l +
R2

l
. (2.4)
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This results in the metric taking the form

ds2 =
[

dR2 + R2σ2
3

]

+
l2

4
(σ2

1 + σ2
2), (2.5)

which clearly shows that the apperent singularity at R=0 (ρ = l) is just a co-ordinate

artefact, and that the manifold looks locally like a product of flat space and a two-sphere

of radius l/2; this type of removable singularity is termed a bolt singularity [29]. It is the

finite size of this two-sphere which has resolved the singularity, by taking l to zero in (2.1)

we explictly see the metric becomes C
2/Z2. (The Z2 comes from an identification required

to make the origin of the resolved space regular [26].)

2.2 Moduli evolution

In our simulations we shall be working in five dimensions, with the four spatial dimensions

initially taking the form of the Eguchi-Hanson metric. This is an exact solution of Einstein’s

equations, so to get the spacetime to evolve we must give the metric some momentum.

Before presenting the full numerical approach we should see what we can find analytically.

As pointed out by Manton in the context of BPS monopoles [33] one can understand the

low-energy dynamics of a system by allowing its moduli to have a small time dependence.

We introduce a time-dependent modulus L(t), such that L(t = 0) = l. In our case we can

use the Einstein-Hilbert action

S =

∫

dt d4x
√
−gR, (2.6)

with the metric

ds2 = −dt2 + ds2
EH (L(t)) , (2.7)

to derive the effective action for the modulus L(t),

Seff =
π2

8

∫

dt

(

d

dt
L2

)2

. (2.8)

This leads to the conclusion that the moduli space approximation predicts that L(t)2

evolves linearly with time. Also, given that the boundary of the moduli space is L = 0 we

see that the modulus L can reach the boundary in finite time.

3. Numerical simulation

The idea now is to start with a regular five-dimensional metric and evolve it numerically

using Einstein’s equations. A similar project was undertaken by Bizon el al [36] who

realised that Birkhoff’s theorem could be evaded in five spacetime dimensions. Their

initial metric however contained a nut singularity at the origin as opposed to the bolt

in (2.7). While both nut and bolt singularities are removable co-ordinate singularities and

so are regular analytically, we found that the numerical techniques of [36] broke down at

the origin. After numerous attempts, using different forms for the metric, we settled on
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the ADM formalism for evolving the metric [37, 38]. This involves three metric functions

along with their momenta,

ds2 = −dt2 + ã(t, r)2 dr2 + b̃(t, r)2(σ2
1 + σ2

2) + c̃(t, r)2σ2
3 . (3.1)

The ADM equations then give first order evolution equations for the metric functions and

their momenta, along with a Hamiltonian constraint and momentum constraints. Note that

we have chosen the gauge such that the lapse is unity and shift vector vanishes, we have

also enforced the bi-axial form of the Eguchi-Hanson metric for simplicity. It is certainly

possible for (3.1) to describe the metric we are interested in, (2.7), however if we were to

simply equate the r co-ordinate of (3.1) with the ρ co-ordinate of (2.7) we would find that

ã(t, r) diverges at the origin. This clearly causes unacceptable numerical problems, so we

need to choose our parametrization more carefully, as desribed in the next section.

3.1 Metric

To aid the stability of the algorithm, particularly in establishing sensible boundary condi-

tions, we require that

1. All three variables and all three momenta to remain even and finite at the origin.

2. All three variables and all three momenta to tend to finite (maybe zero) values asymp-

totically.

3. We minimize the amount of division by variables in all equations of motion.

To that end we evolved the following form for the metric

ds2 = −dt2 +

[

1 + 4
(r

l

)2
]

e2Adr2 + l2
[

1 +
(r

l

)4
]

e2B(σ2
1 + σ2

2) + r2

[

1 +
(r

l

)2
]

e2Cσ2
3

(3.2)

In order to impose all the necessary boundary conditions at once, keeping the equations

regular at the origin, we used techniques outlined in [43, 44]. This involved the introduction

of three new variables DA,DB and DC , to replace the spatial derivatives,

DA = A′ +
4r

l2 + 4r2
, (3.3)

DB = B′ +
2r3

l4 + r4
, (3.4)

DC = C ′ +
r

l2 + r2
. (3.5)

We also introduced the momenta KA,KB and KC , defined as

KA = −Ȧ, (3.6)

KB = −Ḃ, (3.7)

KC = −Ċ, (3.8)

where ˙ indicates derivative with respect to time and ’ indicates derivative with respect to r.

The Di were chosen so as to be odd at the origin as these were simple boundary conditions
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to impose. Actually, the full set of boundary conditions at the origin may be found by

requiring local flatness [43], in which case we find

A(t, r) ∼ A0(t) + O(r2), (3.9)

DA(t, r) ∼ O(r), (3.10)

KA(t, r) ∼ K0
A(t) + O(r2), (3.11)

with similar relations for the functions B(t, r), C(t, r), KB(t, r), KC(t, r) at the origin. We

also find that

A0(t) = C0(t), K0
A = K0

C . (3.12)

By giving the metric functions some initial momentum the spatial part of the metric will

cease to remain Eguchi-Hanson, however it will retain some Eguchi-Hanson features, at

least for early times. Notably, the bolt singularity at the origin will remain, still describing

a two-sphere of radius L(t)/2. We used the value of B at the origin to define this L(t) at

later times.

L(t) = 2 exp(B0(t)) (3.13)

Note that for L(t) to vanish, then B(t, r = 0) must diverge.

4. Initial conditions

In the parametrization of (3.2), using the co-ordinate r = R of (2.4)(2.1) we find that our

initial conditions for the metric functions take the form

A =
1

2
ln



4
(r

l

)2
(

1 −
(

l2

l2 + r2

)4
)−1

(

1 + 4
(r

l

)2
)−1





B =
1

2
ln

[

1

4

(

1 +
(r

l

)2
)2 (

1 +
(r

l

)4
)−1

]

C =
1

2
ln

[

1

4r2

(

1 −
(

l2

l2 + r2

)4
)

(

l +
r2

l

)2 (

1 +
(r

l

)2
)−1

]

.

(4.1)

If we impose vanishing momenta then this would constitute an exact solution of the equa-

tions of motion. As a check of our numerics we do indeed find that the system remains

static. As we want to evolve the Eguchi-Hanson metric toward the conical singularity

we must impose some non-vanishing momentum for the metric functions. This is not a

completely trivial task given that general relativity imposes constraints coming from the

gauge fixing (appendix A). The two constraints, Hamiltonian and momentum, mean that

once A(t = 0, r), B(t = 0, r) and C(t = 0, r) are fixed according to (4.1) there is one free

function left to describe the momentum. To fix this function we take our motivation from

the moduli space approximation of section 2.2 and find that initially we have

KB = −Ḃ = − L̇

l

(

l2 − r2

l2 + r2

)

, (4.2)
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so we are able to choose an L̇ and derive from this KB. we imposed that L̇ was required

to be:

1. even at the origin.

2. finite and negative at the origin.

3. exactly zero far from the origin.

4. continuous and differentiable to first order.

The first condition ensures that KB is even, the second means that we push the Eguchi-

Hanson space towards the conical singularity. The third condition is imposed so that only

the form near the origin is important, and that the non-compact nature of Eguch-Hanson

does not affect the evolution. The final condition gives a smooth profile for us to evolve.

Only one of the three momenta, KB , was specified explicitly by L̇, with the other two

being derived from the constraints (A.1), (A.2) using a 4th order Runge-Kutta algorithm.

We decided on an L̇, taking the form:

L̇ =

{

−L̇0 (1 − ( r
r0)2)2 r < r0

0 r > r0
(4.3)

where L̇0 is a positive constant (the magnitude of L̇ at the origin) and r0 is another

constant which determines the outer radius of the non-zero L̇. With the initial data fixed

we now evolve the system according to the equations of motion laid out in appendix B. To

acheive this we used a 4th order Runge-Kutta algorithm. while keeping a check that the

constraints of appendix A remained small; typically they were of order 0.005.

5. Results

5.1 Apparent horizons

The outgoing radial null geodesics can usually be seen to be increasing in area, but after

the formation of the apparent horizon, which is a null trapped surface, the null geodesics

are no longer increasing in area all null rays are in fact converging. This apparent horizon

shows that there exist points in space for which all null geodesics are unable to diverge to

I+. These points are therefore behind an event horizon. This event horizon must include

everything within the apparent horizon (and maybe more), however the apparent horizon

is far easier to detect and it proves the existence of the event horizon [39]. In order to

determine whether a black hole has formed we continually looked for such an apparent

horizon.

At the apparent horizon, a congruence of null geodesics no longer increase their area

and we may write,

0 =

[

dArea

dt

]

null

, (5.1)

=

[

∂ Area

∂t

]

r

+

[

∂ Area

∂r

]

t

[

dr

dt

]

null

. (5.2)
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The area is determined by Area ∼ b̃2c̃ in terms of (3.1), with
[

dr
dt

]

null
= 1/ã. This may

also be calculated in terms of the extrinsic curvatures [39] to give

0 = −2KB − KC +
2DB + DC + 1

r
√

1 + 4
(

r
l

)2
eA

, (5.3)

at an apparent horizon.

5.2 Formation of black holes

Depending upon our input parameters, L̇ and r0, there were three possible outcomes to

adding the momentum:

1. For sufficiently low L̇ and r0, there was insufficient initial momentum to observe the

creation of either a black hole or a singular topology.

2. For an intermediate range in the parameters the system produced an apparent hori-

zon. After initially increasing, the area of the apparent horizon converged to a con-

stant value.

3. For large initial parameters the system already contained an apparent horizon simply

due to the initial conditions.

Our interest is directed to case 2. In this case a black hole forms, which was not

initially present.

Before we present the results for a range of parameters we focus on a single example

where we took r0 = 1.0, L̇0 = 2.3. In figure 1a we plot the time dependence of L as

measured at the origin, and also give the area of the horizon - both in units of l. What

the figure shows is that L is monotonically decreasing, with L2 decreasing approximately

linearly in the initial phase. This is consistent with the expectations from the moduli

space approximation of section 2.2. However, at some point an apparent horizon forms

(t ∼ 0.11 in the simulation) which then implies an event horizon exists - something the

moduli space approximation does not account for. At this point we can no longer trust

any low-energy dynamics derived from the moduli space approximation. We also see from

figure 1a that the area of the apparent horizon increases initially, but the settles down to a

fixed value. Presumably this corresponds to the formation of what would become a static

black hole; we shall discuss this further in section 5.3. The figure also shows that L, as

defined at the origin, reaches zero in finite co-ordinate time t (t ∼ 0.3 in the simulation).

This corresponds to a divergence in the metric function B(t, r) and is in fact a curvature

singularity. Fortunately this is hidden behind the horizon.

In order to get a clearer understanding of the causal structure of our solution we present

in figure 1b a plot showing various radial outgoing null geodesics. Superimposed on this is

the curve showing the location of the apparent horizon. We see that initially the null rays

continue outwards and, given the asymptotically locally flat structure of Eguchi-Hanson,

reach null infinity. However, some time later the outgoing null rays near the origin turn

around and head towards r = 0. The presence of such null rays indicates that a horizon

has formed, and this is confirmed by the existence of the apparent horizon.
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Figure 1: (a) The steady decrease of L2 and the formation of the apparent horizon. (b) The

outgoing radial null geodesics and the apparent horizon which later formed.

5.3 The resulting black hole

By the time the program ends (due to the curvature singularity at r = 0) the apparent

horizon has settled to a single area which can be measured. The natural question is “what is

the final state?” Given that we cannot run the simulations beyond the curvature singularity

we can only offer a conjecture to answer this question. However, given that the horizon has

converged to a constant value we believe that it is reasonable to suggest a five-dimensional

black-hole is in the process of forming. The black-hole which fits our requirements was

written down in its Kaluza-Klein dimensionally reduced form in [41, 42]. Written in its

five-dimensional form this black hole looks like [40]

ds2 = −fdt2 +
k2

f
dr2 +

r2

4

[

k(σ2
1 + σ2

2) + σ2
3

]

, (5.4)

f(r) =
(r2 − r2

+)

r2
(5.5)

k(r) =
(r2

∞ − r2
+)r2

∞

(r2
∞ − r2)2

(5.6)

and describes a static black-hole with a squashed three-sphere for a horizon at r = r+.

The radial co-ordinate range is 0 < r < r∞ and the parameter range is 0 < r+ < r∞. If we

accept that this is the end state of the Eguchi-Hanson collapse then we are free to evaluate

the squashing function k(r) at the horizon, provided it too has settled to a single value

before the program’s end.

The asymptotic structure of the black-hole is interesting in that it is not asymptotically
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flat, rather it is asymptotically locally flat and takes the form [40]

ds2 = −dT 2 + dR2 + R2dΩS2 +
r2
∞

4
χ2. (5.7)

So, locally this looks like R
(1,3) × S1, where the circle has radius r∞/2. we can find the

parameters r+ and r∞ by evaluating the area of the horizon, and the squashing parameter

on the horizon(k(r+) = k+),

r+ ∼
(

area/k2
+

)
1

3 (5.8)

r∞ = r+

√

k+

k+ − 1
(5.9)

This result gives us a rather novel method for dynamical compactification. Suppose

that instead of starting with a compact manifold, where a portion of Eguchi-Hanson space

has been glued in, we start with the full Eguchi-Hanson space with its four “large” spatial

dimensions. Then our results show that this evolves to a space where one of the spatial

dimensions compactifies to a circle, giving three “large” dimensions and one “small”.

5.4 Varying the initial data

The black hole’s area and the extent to which the angular part is squashed depends on the

initial conditions; in our parametrization (4.3) this means changing L̇0 and r0. The results

of varying L̇0 while keeping r0 constant are shown in figure 2.

As described earlier, for values of L̇ which are too small the system never produces

any sort of horizon, no singularity is formed and the value of L drops for a small amount

then begins to rise again, there is not enough energy to form a black hole or a singularity.

Alternatively, if we take L̇ to be too large then the initial data already contains an

apparent horizon, rather than forming one dynamically. The results we present in figure 2

cover the intermediate range where there is enough localized energy to form a black hole,

but not so much that it is there at the start of the simulation.

In figure 2, where r0 = 1.0, the apparent horizon forms dynamically for 0.7 < L̇0 < 2.8

and it’s area can be seen to converge and be measured. Over the duration of the simulation

the squashing parameter was seen to converge for the range 2.0 < L̇0 < 2.8, and in all

these cases it converges to a value greater than one. This is consistent with the numerical

squashing parameter being identified with the analytic form of k+, given in (5.6), which

must also remain greater than one at the horizon.

If we vary both the values of L̇0 and r0 we can find the resulting area in a great many

cases. this is shown in figure 3. The range in which a horizon forms at a late time is shown

and given a shading scale to indicate the area of that horizon. Within the region marked

A, there is insufficient energy to form a horizon at all. Region B marks the existence of a

horizon within the initial conditions.

6. Conclusions

The possibility of transitions which change the topology of a Calabi Yau manifold, is

intriguing. It suggests a method of connecting, seemingly discrete, moduli spaces of Calabi
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Figure 2: The effect on the final area and extent of squashing (only for values for which it has

converged) at the horizon due to differing the initial L̇0 (r0 = 1.0).
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Figure 3: The effects on the creation of a black hole and it’s final area due to differing the initial

L̇0 and r0.

Yau manifolds by their common singularities. If the transitions can occur dynamically,

then the topology of the compactified dimensions of string theory may change in time.

Based on this expectation one can study the low-energy dynamics coming from such a

transition.

To study these topology changing processes we perform numerical simulations of an
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Eguchi-Hanson spacetime with a collapsing two-cycle. Our results highlight the importance

of gravity during these events where cycles are collapsing, showing that either horizons

form during the process, or the cycle re-expands. In either case one concludes that the

gravitational effects prevent the naive collapse of the cycle.

In section 2.2 we presented a calculation of the moduli dynamics for the Eguchi-Hanson

geometry, predicting that the modulus l should evolve so that l2 was linear in time. This

approximation is only valid for speeds small compared to the curvature scale, owing to

expected couplings between the curvature and derivatives of the modulus; in this limit we

were able to confirm this result with the numerical simulations. One also has to take care

in translating our results, based on the non-compact Eguchi-Hanson geometry, to compact

internal manifolds. Although we believe that simlilar results will hold, one must be aware

that for compact spaces signals are able to propogate across the internal dimensions, and

could modify our conclusions. In particular, one may find cases where a horizon forms in

the compact space, whilst the non-compact version was horizon-free.

We have presented evidence that, in the case where a horizon forms, the final state of

the evolution is a black hole, where the horizon is a squashed three-sphere [41, 42]. Such

a black-hole has an interesting asymptotic structure, namely there is a compact circle at

infinity, and this leads us to an unexpected mechanism for compactificaction. If, instead of

picturing the Eguchi-Hanson space as a portion of a compact internal space, we start with

the full Eguchi-Hanson space, with its four “large” dimensions, we see that the final state

has a compact dimension and corresponds to the Kaluza-Klein black-hole of [41].
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A. Constraints

The metric produced the following constraints, equations the variables must always conform

to. These were imposed as initial conditions and later monitored to test the program’s

accuracy.

The Hamiltonian constraint:

0 = −KA (2KB + KC) − KB (KB + 2KC) +
c2

b4
− 4

b2
(A.1)

+
1

a2

(

− DA

(

DC +
1

r

)

+ 2DB

(

DC +
1

r

)

− 2DA DB

+3D2
B + 2D′

B + D′
C +

2DC

r
+ D2

C

)

Also the momentum constraint:

KA

(

DC + 2DB +
1

r

)

= 2K ′
B + K ′

C + 2KB DB + KC

(

DC +
1

r

)

. (A.2)
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where:

a2 =

(

1 + 4
(r

l

)2
)

e(2A) b2 = 4l2
(

1 +
(r

l

)4
)

e(2B) c2 = 4 r2

(

1 +
(r

l

)2
)

e(2C)

(A.3)

Apparently singular terms within these constraints did not produce any instabilities

as they do not feed back into the equations used to evolve the system, they were only used

for testing purposes.

B. Equations of motion

We found the equations of motion from the field equations using the ADM formalism [37,

38]. Also we added multiples of the momentum and Hamiltonian constraints to remove

as many potentially singular terms from our equations of motion. This resulted in the

following equations of motion.

Ȧ = −KA

Ḃ = −KB

Ċ = −KC

K̇A =
1

a2

(

D2
B + 2DB

(

DC +
1

r

))

+
c2

b4
− 4

b2
+ K2

A − K2
B − 2KB KC

K̇B =
1

a2

(

DB DA−2D2
B−D′

B−DB

(

DC +
1

r

))

− 2 c2

b4
+

4

b2
+2K2

B +KB KC +KB KA

K̇C =
1

a2
(3D2

B − 2DB DA + 2D′
B) +

3 c2

b4
− 4

b2
− K2

B + K2
C − 2KB KA

ḊA = −K ′
A

ḊB = −K ′
B

ḊC = −K ′
C (B.1)

Where a, b and c are defined in (A.3). The only potentially singular term remaining

(which could have produced instabilities) is DB/r, analytically this is regular as DB is

odd. Numerically it was sufficiently stable to allow the program to run its course.
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